Komorebi AI

Personalizing Text-to-Image Generation via Aesthetic Gradients

NeurIPS, Workshop on ML for Creativity and Design, 2022

Abstract

This work proposes Aesthetic Gradients, a method to personalize diffusion models by guiding the generative process towards custom aesthetics defined by the user from a set of images.  The approach is validated with qualitative and quantitative experiments, using the recent stable diffusion model and several aesthetically-filtered datasets.

The study introduces Aesthetic Gradients for personalizing diffusion models, advancing user-interactive technology and impacting fields like digital art, design, and marketing.

Where does it apply?

It can be used in digital art and design to create unique, AI-generated visuals guided by custom aesthetics. In marketing, it can produce customized ad content in line with brand aesthetics. 

The entertainment industry can use it to generate personalized visual effects or graphics. It can also be used in personal software applications for user-customizable aesthetic outcomes.

Personalizing Text-to-Image Generation via Aesthetic Gradients

Why does it matters?

The proposed aesthetic gradients matter as they allow for a new level of personalization in the generative systems.

With this method, a user can guide the generative model towards custom aesthetics defined by a chosen set of images. This enables the creation of unique, personalized AI-generated content, enhancing the usability and applications of such models in fields like digital art, design, marketing, and entertainment. 

Additionally, by providing both qualitative and quantitative validation, this work advances our understanding and effectiveness of user-guided and aesthetically-informed machine learning models. Thus, it holds significant implications for the future of creative AI and user-interactive technology.

Personalizing Text-to-Image Generation via Aesthetic Gradients

NeurIPS, Workshop on ML for Creativity and Design, 2022

Personalizing Text-to-Image Generation via Aesthetic Gradients

Otras publicaciones

Adversarial Machine Learning: Bayesian Perspectives
AI in drug development: a multidisciplinary perspective
How do tuna schools associate to dFADs?

Adversarial Machine Learning: Enfoque Bayesiano

IA en el desarrollo de medicamentos: una perspectiva multidisciplinaria

¿Cómo se asocian los bancos de atunes con los dFADs?

Aplicamos un enfoque bayesiano para mejorar la defensa contra amenazas de seguridad en sistemas basados en Aprendizaje Automático: preveniendo ataques en ciberseguridad, sistemas de aprendizaje no supervisado y procesamiento de lenguaje natural.

La revisión explora el uso de la IA, en particular enfoques bayesianos, para acelerar y reducir el costo del desarrollo de medicamentos en todas las etapas.

Aprendizaje Automático para analizar el comportamiento de los atunes alrededor de los Dispositivos de Agregación de Peces (dFADs), proporcionando información para mejorar la pesca sostenible, la investigación en biología marina y las políticas de conservación.