AI in drug development: a multidisciplinary perspective

Molecular Diversity, 2021

Abstract

This review discusses the application of artificial intelligence tools, particularly Bayesian approaches, in streamlining the lengthy and costly process of new drug development

By aiding in tasks like identifying molecular targets and predicting targets such as ADME-Tox, Machine Learning models are utilized in all stages from basic research to post-marketing. 

This review aims to bridge the gap between chemists and mathematicians, focusing on molecular modeling and decision-support applications often overlooked in similar research.

Streamlining Drug Development Process using Bayesian Approaches in Artificial Intelligence

Where does it apply?

The use of Bayesian approaches is applicable across the entire drug development process, from basic research for drug discovery, the pre-clinical phase, the clinical phase, and even the post-marketing phase. 

It can be used to identify molecular targets, search for hit and lead compounds, synthesize drug-like compounds, predict ADME-Tox, and support decision-making processes.

Why does it matters?

Machine Learning can significantly expedite and reduce the cost of the process which traditionally is lengthy and costly. Specifically, the use of Bayesian approaches aids in better decision-making and molecular modeling, thus potentially leading to more effective and safer drugs. 

Furthermore, a better understanding between chemists and mathematicians can yield improved collaboration and integration of AI into the drug development process.

AI in drug development: a multidisciplinary perspective

Molecular Diversity, 2021

Otras publicaciones

Avances Actuales en Redes Neuronales

Producción de hadrones mediante dijets inclusivos con veto en rapidez

Asociación conjunta de la actividad física e índice de masa corporal con el riesgo cardiovascular

El artículo revisa el progreso de las redes neuronales enfatizando enfoques bayesianos y destaca su relevancia en análisis predictivos, análisis del comportamiento del cliente y gestión de riesgos en sectores empresariales.

El estudio explora parámetros para la expansión perturbativa en la colisión de partículas, ayudando al entendimiento de la física de partículas. En el largo plazo, aplica a campos como la computación cuántica, la tecnología de la salud y la energía nuclear.

El estudio refuta la paradoja de estar «con sobrepeso pero en forma», destacando la importancia de la pérdida de peso en combinación con la actividad física para aliviar los riesgos de enfermedades cardiovasculares.