Komorebi AI

Adversarial Machine Learning: Bayesian Perspectives

Journal of the American Statistical Association, 2023


Adversarial Machine Learning (AML) is a growing field focused on defending Machine Learning (ML) systems from security threats where adversaries manipulate input data to deceive these systems. 

While most AML work relies on game-theoretic modeling of the conflict between an ML system and its adversary, this approach makes unrealistic assumptions about each party’s knowledge of the other’s intentions and uncertainties.  

This paper proposes a Bayesian approach that allows for better modeling of uncertainties regarding an opponent’s beliefs and interests, offering a more realistic and robust defensive method for ML-based systems. 

A Bayesian approach to enhance defense against security threats in Machine Learning systems, applicable across cybersecurity, unsupervised learning and natural language processing.

Where does it apply?

The Bayesian approach to Adversarial Machine Learning is applicable in enhancing cybersecurity by protecting machine learning systems from attacks.  It can be used in unsupervised learning to improve methods such as clustering, and in natural language processing to create robust language models.  

Other applications include fake news detection, development of robust algorithms for autonomous driving systems, improving counterfactual inference in observational studies, and making deep neural networks more robust for image classification. 

In short, it can be applied anywhere that uses machine learning systems for decision-making.

Adversarial Machine Learning: Bayesian Perspectives

Why does it matters?

Adversarial Machine Learning (AML) matters because it is crucial for protecting ML algorithms, which are widely used in contemporary technology applications. These systems can be manipulated by adversaries posing security threats, thus, maintaining their robustness against attacks is essential. 

Moreover, the exploration of this approach can benefit various ML problems, leading to advancements in fields such as unsupervised learning, natural language processing, and reinforcement learning. 

The framework also has direct applications in defending against fake news, developing robust algorithms, improving observational studies, and enhancing adversarial robustness.

Adversarial Machine Learning: Bayesian Perspectives

Journal of the American Statistical Association, 2023

Adversarial Machine Learning: Bayesian Perspectives

Otras publicaciones

renewable energy
Pomeron Physics at the LHC
Poor self‐reported sleep is associated with risk factors for cardiovascular disease: A cross‐sectional analysis in half a million adults

Predicción de Energía Fotovoltaica mediante Aprendizaje Automático utilizando Datos Satelitales

Física del Pomeron en el LHC

El sueño autoinformado deficiente se asocia con factores de riesgo de enfermedades cardiovasculares

Modelos de aprendizaje automático para mejorar la predicción de la producción de energía fotovoltaica en España, beneficiando sectores como la energía renovable y las finanzas.

El estudio utiliza la Teoría de Regge y el intercambio de Pomeron para mejorar la comprensión de las colisiones de hadrones. A largo plazo, influyendo en avances en áreas como la computación cuántica, la tecnología médica, la defensa y la energía.

El estudio indica un vínculo entre el sueño deficiente y un mayor riesgo de enfermedades cardiovasculares, enfatizando la necesidad de mejoras en estrategias del sueño y políticas de salud.