How do tuna schools associate to dFADs? A study using echo-sounder buoys to identify global patterns

Marine Ecology Progress Series, 2023

Abstract

This study uses Machine Learning to analyze data from echo-sounder buoys attached to Fish Aggregating Devices (dFADs) in tropical oceans, aiming to understand the behavioral patterns of tuna schools.  

Metrics show that it takes between 25 and 43 days for tuna to first colonize dFADs, with longer times observed in the Pacific Ocean.  Novel metrics, ‘aggregation time’ and ‘disaggregation time’, further revealed that the time taken for the tuna aggregation to depart from the dFADs is not significantly longer than the time taken to form. 

The study also discusses the implications of the results in the context of the ‘ecological trap’ hypothesis and proposes further analyses to utilize this data.

Machine Learning to analyze tuna behavior around Fish Aggregating Devices, providing insights to enhance sustainable fishing, marine biology research and conservation policies.

Where does it apply?

The study on tuna behavior utilizing machine learning is applicable in commercial fishing for developing sustainable practices. 

It can assist marine biology research in understanding species dynamics. The findings can contribute to conservation efforts and policies pertaining to the use of Fish Aggregating Devices. 

Additionally, the success of this approach can also expand the use of AI and machine learning in computational biology and other biological data analysis areas.

Why does it matters?

This study matters as it provides crucial insights into the behavior of tuna schools in relation to Fish Aggregating Devices (dFADs), which are important resources in commercial fishing. 

Understanding the aggregation and disaggregation times, as well as the colonization patterns of tuna can lead to more effective and sustainable fishing practices, potentially reducing overfishing and its negative ecological impacts. 

Furthermore, the application of machine learning in this context showcases the potential of AI in enhancing marine biology studies and natural resource management.

How do tuna schools associate to dFADs? A study using echo-sounder buoys to identify global patterns

Marine Ecology Progress Series, 2023

Otras publicaciones

procesamiento del lenguaje natural

TUN-AI

Evaluación del efecto de la inversión en publicidad sobre las ventas

Generación personalizada de imagen a partir de texto a usando gradientes estéticos

Un método de Aprendizaje Automático, para la estimación precisa de la biomasa de atún; beneficiando a la industria pesquera, organizaciones de gestión pesquera y la pesca sostenible.

Predicciones precisas de ventas basadas en la inversión en publicidad para ayudar en la toma de decisiones  para la planificación estratégica de la inversión publicitaria, asignación de presupuestos y planificación de campañas de marketing.

El estudio introduce la metodología de Gradientes Estéticos para personalizar modelos generativos de difusión, mejorando la experiencia del usuario e impactando campos como el arte digital, el diseño y el marketing.