Komorebi AI

Reinforcement Learning under Threats

Proceedings of the AAAI Conference on Artificial Intelligence, 2022

Abstract

The study introduces the concept of Threatened Markov Decision Processes (TMDPs) to address the issue of suboptimal results from Q-learning in reinforcement learning scenarios where adversaries may interfere with the reward generation process. 

Rather than viewing the multi-agent system as a game, the focus is on decision-making for a single agent against a potential adversary. Through this model and a proposed level-k thinking scheme, a new learning framework is developed to handle TMDPs, with empirical tests demonstrating the benefits of this opponent modeling approach.

The study introduces Threatened Markov Decision Processes and a level-k reasoning approach for enhanced decision-making in adversarial reinforcement learning scenarios, relevant to cybersecurity, finance, and AI.

Where does it apply?

The Threatened Markov Decision Processes (TMDPs) and level-k reasoning approach are applicable in industries where decision-making occurs in potentially adversarial or competitive environments. 

These include, but are not limited to, cybersecurity (for detecting and mitigating threats), finance (for trading strategies in competitive markets), strategic business decisions in competitive industries, and areas of artificial intelligence and machine learning where robust adversarial training is necessary.

Adversarial Machine Learning: Bayesian Perspectives

Why does it matters?

Threatened Markov Decision Processes (TMDPs) matter because they provide a framework to assist decision-makers in reinforcement learning scenarios where adversarial interference impacts the reward generation process. 

The level-k reasoning method for modeling adversarial behavior also offers a novel approach to enhance decision-making under threat models. 

Such an approach is crucial in enhancing the robustness and flexibility of AI systems in various fields, including cybersecurity, where the presence of adversarial instances is a significant concern.

Reinforcement Learning under Threats

Proceedings of the AAAI Conference on Artificial Intelligence, 2022

Reinforcement Learning under Threats

Otras publicaciones

Current Advances in Neural Networks
industria
Joint association of physical activity and body mass index with cardiovascular risk: a nationwide population-based cross-sectional study

Avances Actuales en Redes Neuronales

Producción de hadrones mediante dijets inclusivos con veto en rapidez

Asociación conjunta de la actividad física e índice de masa corporal con el riesgo cardiovascular

El artículo revisa el progreso de las redes neuronales enfatizando enfoques bayesianos y destaca su relevancia en análisis predictivos, análisis del comportamiento del cliente y gestión de riesgos en sectores empresariales.

El estudio explora parámetros para la expansión perturbativa en la colisión de partículas, ayudando al entendimiento de la física de partículas. En el largo plazo, aplica a campos como la computación cuántica, la tecnología de la salud y la energía nuclear.

El estudio refuta la paradoja de estar «con sobrepeso pero en forma», destacando la importancia de la pérdida de peso en combinación con la actividad física para aliviar los riesgos de enfermedades cardiovasculares.