Komorebi AI

Pomeron Physics at the LHC

2017

Abstract

This paper discusses the application of Regge Theory, which originated from pre-QCD S-matrix theory, in understanding hadron collisions

The theory suggests that cross sections of these collisions grow as a power of the center of mass energy, represented in particle exchange or bound state production. 

This phenomenon is primarily attributed to the exchange of a particle trajectory, referred to as Pomeron exchange, which predicts a power-law rise in the total cross section. The proceedings aim to review advancements in utilizing Pomeron exchange to interpret LHC (Large Hadron Collider) data, given the observable power-law behavior in p-p total cross section data.

The study uses Regge Theory and Pomeron exchange to enhance understanding of hadron collisions, influencing advancements in areas like quantum computing, medical technology, defense, and energy.

Where does it apply?

In the long term, it can contribute to advancements in quantum computing, beneficial for high-tech businesses. 

In the medical technology field, it can enhance the development of imaging technologies and radiation therapy. 

The research is also relevant for aerospace and defense sectors, offering protection strategies against high-radiation environments. Moreover, its implications can be useful for the energy industry, specifically nuclear and potentially fusion energy.

Pomeron Physics at the LHC

Why does it matters?

This research matters because it contributes to the understanding of fundamental particle physics through the use of Regge Theory, specifically the concept of Pomeron exchange. 

By using this theory to interpret Large Hadron Collider (LHC) data, researchers are able to better understand the nature of hadron collisions.

Such understanding is crucial for advancing the field of quantum physics and could potentially lead to important developments in multiple areas, from particle physics investigations to technological innovations. 

Pomeron Physics at the LHC

2017

Pomeron Physics at the LHC

Otras publicaciones

Wind Energy Prediction
Adversarial Machine Learning: Bayesian Perspectives
Variationally Inferred Sampling through a Refined Bound

Ensemble de Árboles de Regresión para la Predicción de Energía Eólica y Radiación Solar

Aprendizaje por Refuerzo bajo Amenazas

Muestreo con Inferencia Variacional a través de un Límite Mejorado

El estudio destaca cómo los modelos de Ensemble mejoran las previsiones de energía; promoviendo una mejor gestión energética y estrategias de inversión en el sector de las energías renovables.

El estudio introduce una nueva técnica, los Procesos de Decisión de Markov bajo Amenazas, que permite mejorar la toma de decisiones en escenarios de aprendizaje por refuerzo adversario. El trabajo tiene aplicaciones en ciberseguridad, finanzas e IA.

Una nueva técnica que mejora la inferencia bayesiana en modelos probabilísticos, aumentando la eficiencia de los procesos de toma de decisiones en diversos campos. Por ejemplo, el análisis financiero, la gestión de riesgos, el aprendizaje automático y la logística.