Komorebi AI

Inclusive dijet hadroproduction with a rapidity veto constraint

Nuclear Physics B, 2018


This study explores ratios of azimuthal-angle distributions in Mueller-Navelet jets, focusing on scenarios where a rapidity veto constraint is applied to restrict minijet radiation activity. 

The research reassesses the required value of the rapidity separation ‘b’ in the context of the NLLA BFKL Green’s function’s asymptotic growth, which has been found to prevent unphysical cross-sections

This point is investigated from a phenomenological perspective, determining optimal ‘b’ values that best align with angular distributions measured at the Large Hadron Collider (LHC), while considering impact factors and parton distribution effects.

The study explores parameters for perturbative expansion in particle physics, enhancing accuracy in fields like quantum computing, health technology, nuclear energy, and environmental monitoring.

Where does it apply?

It can contribute to advancements in quantum computing, beneficial for high-tech businesses. 

In the medical technology field, it can enhance the development of imaging technologies and radiation therapy.

The research is also relevant for aerospace and defense sectors, offering protection strategies against high-radiation environments. Moreover, its implications can be useful for the energy industry, specifically nuclear and potentially fusion energy.


Why does it matters?

The research matters because it proposes a new method to stabilize perturbative expansion in particle physics, enhancing alignment with existing Large Hadron Collider data. 

The findings provide insights into the limitations of theoretical models and the necessary parameters for accurate data description. 

Additionally, the research validates the effectiveness of specific renormalization schemes in understanding complex particle interactions. 

These advancements contribute to the accuracy of predictive models in particle physics, influencing fields that depend on these models and predictions.

Inclusive dijet hadroproduction with a rapidity veto constraint

Nuclear Physics B, 2018

Inclusive dijet hadroproduction with a rapidity veto constraint

Otras publicaciones

Wind Energy Prediction
Adversarial Machine Learning: Bayesian Perspectives
Variationally Inferred Sampling through a Refined Bound

Ensemble de Árboles de Regresión para la Predicción de Energía Eólica y Radiación Solar

Aprendizaje por Refuerzo bajo Amenazas

Muestreo con Inferencia Variacional a través de un Límite Mejorado

El estudio destaca cómo los modelos de Ensemble mejoran las previsiones de energía; promoviendo una mejor gestión energética y estrategias de inversión en el sector de las energías renovables.

El estudio introduce una nueva técnica, los Procesos de Decisión de Markov bajo Amenazas, que permite mejorar la toma de decisiones en escenarios de aprendizaje por refuerzo adversario. El trabajo tiene aplicaciones en ciberseguridad, finanzas e IA.

Una nueva técnica que mejora la inferencia bayesiana en modelos probabilísticos, aumentando la eficiencia de los procesos de toma de decisiones en diversos campos. Por ejemplo, el análisis financiero, la gestión de riesgos, el aprendizaje automático y la logística.